Frege, (Friedrich Ludwig) Gottlob

Frege, (Friedrich Ludwig) Gottlob

Frege, (Friedrich Ludwig) Gottlob

(d. 8Kasım 1848, Wismar, Mecklenburg-Schwerin – ö. 26 Temmuz 1925, Bad Kleinen, Almanya), modern matematiksel mantığın kurucusu olan Alman matematikçi ve mantıkçı. Matematik felsefesi ve matematiksel mantık üzerine ilk bilimsel çalışmalarıyla
mantığın modern gelişimini olanaklı kılan temel kavramları ortaya çıkarmıştır.
Wismar’daki bir kız lisesinin yöneticisi olan Alexander Frege ile Polonya asıllı Auguste Frege’nin (eö Bialloblotzky) oğluydu. 1869’da Jena Üniversitesi’ne girdi; iki yıl burada okuduktan sonra iki yıl da Göttingen Üniversitesi’nde matematik, fizik, kimya ve felsefe eğitimi gördü. Bütün meslek yaşamını Jena Üniversitesi’nde matematik dalında ders vererek geçiren Frege 1896’da profesör oldu. Matematiğin bütün dallarında, bu arada kendi mantık sistemi konusunda dersler verdi. Yayımlarının pek çoğu ise felsefi nitelikteydi.
Frege dinsel inançları yönünden liberal bir Lutherci, siyasal görüşleri yönünden ise gerici idi. Monarşiye ve Mecklenburg hanedanına karşı büyük bir sevgisi vardı;
I. Dünya Savaşı yenilgisine ve Versailles Antlaşması utancına yol açtığına inandığı sosyalizm ve demokrasiden ise nefret ediyordu. Son yıllarında tuttuğu günlüğü, Fransızlardan ve Katoliklerden de nefret ettiğini ve bütün Yahudilerin Almanya’ dan çıkartılması gerektiğine inanacak ölçüde Yahudi düşmanı olduğunu gösteriyordu.
Matematiksel mantık sistemi. Frege 1879’da yayımladığı Begriffsschrift (Kavram Notları) adlı yapıtında ilk kez modern anlamda bir matematiksel mantık sistemini ortaya koydu. Ama o dönemde ister matematikçi, ister felsefeci hiç kimse onun gerçekleştirmeyi başardığı işi kavrayamadı; konu 20-30 yıl sonra yaygınlaşmaya başladığında da Frege’nin görüşleri araştırmacılara ancak Peano gibi başka bilim adamları aracılığıyla ulaşabildi. Bertrand Russell sağlığında Frege’nin önemini anlayabilen birkaç kişiden biriydi. Begriffsschrift, alışılmamış görüşleri alışılmamış ve karmaşık bir simgeler sistemiyle ortaya koyuyor ve okuyucunun daha baştan gözünü korkutuyordu. Yapıtının bilim dünyasınca kabul görmemesinden henüz fazla etkilenmeyen Frege ikinci kitabını hiç simge kullanmaksızın yazmaya karar verdi.
Mantık felsefesi ve matematik felsefesi üzerine yoğun bir çalışma döneminden sonra Die Grundlagen der Arithmetik’i (1884; Aritmetiğin Temelleri) adlı ikinci kitabını yayımladı. Gerçek bir felsefe başyapıtı olmasına karşın kitap hakkında bir tek eleştiri yazısı çıktı. Görüşleri Frege’ninkilere en yakın düşen matematikçi George Cantor bu saldırgan ve düşmanca yazısında yapıtı anlamak zahmetine bile katlanmadan haksız yere tümüyle küçümsüyordu.
Grundlagen’e gösterilen tepkiye çok üzülen Frege, izleyen 10 yıl içinde yayımladığı bir dizi önemli makalede mantık felsefesine yöneldi. Bu makalelerde konunun temellerine ilişkin birçok önemli görüşe yer vermekle birlikte, kuramlarını sistemleştirdikçe bir tür skolastisizme de yöneldi. Ardından Grundgesetze der Arithmetik (1893; Aritmetiğin Temel Yasaları) adlı yapıtının
Frege
Universitätsbibliothek. Jena Almanya
birinci cildini yayımlayarak yeniden matematik felsefesine döndü. Bu yapıtında, Grundlagen’da ortaya koyduğu kavramı, Begriffsschrift’teki simge sisteminin değişik bir biçimini kullanarak, özenle geliştirdi. Bu yapıt hakkında da yalnızca Peano bir eleştiri yazısı yayımladı. Başyapıtının görmezlikten gelinmesine duyduğu kızgınlığı bu yapıtının önsözünde dile getirdi. Grund-gesetze’nin 1903’te yayımlanan ikinci cildinde ise Frege’nin saldırıları acımasız ve aşağılayıcı bir havaya büründü; bu eleştirileriyle Frege kendisini görmezlikten gelen bilim dünyasından sanki öç alıyordu.
Frege sistemindeki çelişkiler. Frege, kendisini izleyen ve çalışmalarına değer veren birkaç kişiden biri olan Bertrand Russell’, dan 16 Haziran 1902’de bir mektup aldığında Grundgesetze’nin ikinci cildi baskıdaydı. Russell mektubunda alçakgönüllü ama kesin bir dille Frege’nin mantık sisteminde bir çelişkinin ortaya konabileceğini belirtiyordu. Bu çelişki, sonradan Russell’ın adıyla anılacak olan ünlü paradokstu. Frege ile Russell bu konuda birçok kez mektuplaştılar ve Frege, sistemini tutarlı duruma getirmek amacıyla aksiyomlarından birini değiştirdi; kitap baskıya girmeden önce yaptığı bu değişikliği yapıta koyduğu bir ekte açıkladı. Aksiyomun bu değişik biçiminin de sistemi çelişkiden kurtaramadığını Frege’nin ölümünden sonra Polonyalı mantıkçı Stanislaw Lesniewski gösterdi. Kitabın birinci cildindeki teoremlerin kanıtlarına şöyle bir bakılması bile önemli bazı kanıtların geçerli olmadığını anlamaya yeterliydi ve Frege de bunu görmüş olmalıydı.
1903’ten sonra Frege bilimsel üretkenliğini sürdüremedi. Grundgesetze’nin tasarlanan üçüncü cildi yayımlanmadı; kurduğu matematiksel mantıkta önemli gelişmeler görülürken Frege, bu konuda başka bir çalışma yapmadı. Birkaç polemik yazısı yayımladı ve savaşın bitmesinden sonra mantık felsefesi alanında yayımladığı üç makale dışında yeni bir ürün ortaya koymadı. 1912’de Russell’ın Cambridge’deki bir matematik kongresinde konuşma yapmasına ilişkin çağrısını derin bir bunalımı yansıtan bir ifadeyle geri çevirdi. Yaşamının son yıllarında, önceki çalışmalarının başlıca temellerinden biri olan aritmetiği mantığa dayalı olarak kurma çabasının yanlış olduğu sonucuna vardı ve matematik felsefesi üzerinde yeniden çalışmaya başladı, ama bu çalışma fazla ilerlemedi ve yayımlanmadı.
Etkisi. Frege’nin çalışmaları, niceleyicilerin ve değişkenlerin gösterimini bulmuş olmasından ötürü modern mantığın başlangıcı olarak kabul edilir. (Doğal dillerde, genellik niteliği, yüklemin yönetilen deyim kesimine “her” ya da “bazı” gibi bir deyim eklenerek belirtilir; Frege’den bu yana gelişen mantık gösteriliminde ise yönetilen deyim kesimine bir değişken simgesi, örneğin x konur ve böylece ortaya çıkan deyimin önüne de “Her x için” ya da “Bazı x’ler için” gibi, bu değişkeni “bağlayan” bir niceleyici getirilir.) Bu gösterim sayesinde Frege, ortaçağdan bu yana mantıkçıları çıkmaza sokan ve mantığın ilerlemesini engelleyen sorunu, yani birden çok genellik içeren cümlelerin analizi sorununu çözdü. Mantık yasalarının biçimsel nitelenişiyle semantik doğrulanması arasındaki ilk kesin ayrımı da Frege ortaya koymuştur. Onun felsefe alanındaki çalışmaları, bunları doğrudan uygulamış olduğu matematik felsefesindeki öneminin çok ötesinde bir öneme sahiptir; gerçekte Frege, René Descartes’ın
17. yüzyılda gerçekleştirdiği devrim kadar önemli bir devrim gerçekleştirmiştir. Des-cartes bilgi felsefesini tüm felsefenin başlangıç noktası yapmıştı, Frege de anlam kuramım ya da dil felsefesini aynı yere koydu.

Felsefenin sınırlı bir bölümünü bütün felsefeye temel yaptığı için, yakıtları kendinden sonrakiler üzerinde etkili oldu. Ama bu etki daha çok başka felsefeciler tarafından sağlanmıştır, bunların başında da Frege’yi 1914’te ziyaret eden ve ona büyük saygı duyan Wittgenstein gelir. Grundlagen’in 1950’de John Austin tarafından İngilizceye çevrilmesinden bu yana Frege’nin Anglosakson felsefesi üzerindeki etkisi çok büyük olmuştur. Frege’nin hiçbir konuda son sözü söylediği iddia edilemez ama çağdaş dil felsefesinde onun görüşlerinin hiç olmazsa en iyi başlangıç noktasını oluşturmadığı bir sorun yok gibidir.

Cevapla

E-posta adresiniz yayınlanmayacak. Gerekli alanlar işaretlenmelidir *

*